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Abstract— A family of (m,2)-methods for stiff problems solving 

is studied. Numerical schemes of the second and the third order are 
constructed. It is shown, that a maximum order of (m,2)-methods is 
four. A-stable and L-stable numerical formulas of a maximum order 
are designed. An inequality for accuracy control for the L-stable 
methods of the fourth order is constructed. Numerical results 
confirming the efficiency of the constructed method are given. 
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I. INTRODUCTION 
hen solving the Cauchy problem for a stiff system of 
ordinary differential equations, Rosenbrock type 
methods [1] are widely used due to simple 

implementation and reasonably good accuracy and stability. 
The Rosenbrock type methods where the same Jacobi matrix 
is used in calculating each stage are in the most common use. 
It is known (see, e.g., [2]), that in this case the maximum 
accuracy order of the m -stage Rosenbrock method is ( )1m + , 
in addition, a scheme of the maximum order can be only A -
stable. If the maximum order is not required, a L -stable 
numerical formula of order m can be constructed. In practical 
calculations, as a rule, the maximum order is abandoned in 
favour of L -stability.  

A scheme of order higher than two with the Jacobi matrix 
freezing can not be constructed on the basis of methods of the 
Rosenbrock type [3]. This limits the application of these 
methods to calculations with moderate accuracy or to 
problems of a small dimension.  

In [4–5] a class of ( ),m k -methods where determining a 
stage does not involve calculation of a right-hand part of a 
system of differential equations is proposed. The 
implementation of ( ),m k -methods is as simple as that of 

Rosenbrock methods, however, ( ),m k -schemes have 
advantages for accuracy and stability. In the framework of 
( ),m k -methods the problem of freezing the Jacobi matrix and 
its numerical approximation is solved more easily.  
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In this paper ( ), 2m -methods for solving stiff systems 
where at each step the right-hand part of a system of ordinary 
differential equations is calculated two times are investigated.  
It is shown that the maximum order of accuracy of the L -
stable ( ), 2m -method is four. An inequality for accuracy 
control for the L -stable methods of the fourth order is 
constructed. Numerical results confirming the efficiency of 
the constructed method are given. 

II. METHODS OF ROSENBROCK TYPE 
We consider a Cauchy problem for a system of ordinary 

differential equations 
( ),y f t y′ = , 0 0( )y t y= , 0 kt t t≤ ≤ , (1) 

where  and y f  are real -dimensional vector functions, t  
is an independent variable, which varies over the given finite 
interval. It is known, that introducing an additional variable 
one can reduce a non-autonomous system to an autonomous 
form. Hence, the formulation of (1) can be considered without 
the loss of generality. Methods of a Rosenbrock type for 
problem (1) have the form 
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nD E ahf ′= − ,  
where  is an integration step,  is an identity matrix, h E

( ) /n nf f y y′ = ∂

W 

∂  is the Jacobi matrix of a vector function 

( )f y , , , 1a ip i m≤ ≤ , and , 1 , ijβ i m≤ ≤ 1 1j i≤ ≤ − , are 
numerical coefficients. At present, the methods of a 
Rosenbrock type are treated in a wider sense [2]. Numerical 
formula (2) can be obtained from a class of semi-explicit 
methods of a Runge-Kutta type provided that only one 
iteration step of the Newton’s method is performed when 
calculating each stage. In Rosenbrock methods only linear 
systems of algebraic equations are solved when calculating a 
stage, whereas in implicit or semi-explicit Runge-Kutta 
methods an iterative process of the Newton type is required 
that leads to additional problems in its implementation. 
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III. THE CLASS OF (M, K)-METHODS 

A class of ( ),m k -methods [4] is introduced as follows. Let 
integer positive numbers  and , , be given. Denote 
a set of integer numbers , 1 , by 

m k k m≤
i i m≤ ≤ mM  and the subsets 

of mM  of the form 

{ 11k i m k }M m M m m m= ∈ = < < ≤L ,  

{ 1 1i j m j k j }J m M j m M m i−= ∈ > , ∈ , ≤ , (3) 

2 i m≤ ≤ ,  
by kM  and iJ  . Then, ( ),m k -methods can be represented in 
the form 

1
1

m

n n i i , ,  
i

y y p+
=

= + ∑ n nD E ahf ′= −k

1

1 i

i

n i n ij j ij j
j j J

D k hf y β k α k
−

= ∈

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ ∑ , , (4) ki M∈

1
i

n i i ij j
j J

D k k α k−
∈

= + ∑ , .  \mi M M∈ k

The set iJ , , serves to eliminate the redundant 
coefficients  by means of which we can not make effect on 
accuracy and stability of (4) and which can be expressed 
linearly in terms of other coefficients. In traditional one-step 
methods, to determine computational work per integration 
step a single constant m  being the number of stages is 
sufficient because in these methods each stage is accompanied 
by obligatory calculation of the right-hand part of (1). In 
methods (4) there are two types of stages. For some stages it is 
necessary to calculate the right-hand part, but for other ones it 
is not required. As a result, to determine computational work 
per step in (4) two constants  and  are needed. The 
expense of a step is as follows: the Jacobi matrix is calculated 
once and the decomposition of a matrix  is performed 
once, function 

2 i m≤ ≤

ijα

m k

nD
f  is calculated  times, backward Gauss is 

performed m times. For  and  numerical schemes 
(4) coincide with methods (2) of a Rosenbrock type. In other 
cases these methods differ and methods (4) have advantages 
over methods (2). 

k
k m= 0ijα =

IV. THE MAXIMAL ORDER OF ACCURACY OF (M,2)-METHODS 

We consider ( ), 2m -methods of the following form 
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where 1s  and , m 1s m≤ , are arbitrary integer constants. It is 
easy to see, that formulas (5) describe all kinds of ( ), 2m -
methods (4).  

Theorem. For any number  of stages and for any set m 2M  it 
is impossible to construct an ( -method of accuracy of 
order higher than four. 

), 2m

Without the loss of generality we give a proof for scalar 
problem (1), which exact solution ( )1ny t +  can be written in 
the form 
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where the elementary differentials are calculated on an exact 
solution ( )ny t . We consider ( -methods (5). Taking into 
account 

)
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we observe that the second calculation of a function ( )f y  is 
performed at the point 
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where , 1ic 4i≤ ≤ , are determined in terms of the coefficients 
of scheme (5) and the elementary differentials are calculated 
on an approximate solution . Taking into consideration (6) 
and (7), to prove the theorem it is sufficient to show that the 
Taylor expansion of the function 

ny

( ),n cf y  in terms of powers 

of  does not involve the term . The Taylor 

expansion of 

h 5 2 3
n nh f f′′

( ),n cf y  in a vicinity of the point  up to terms 

of order  inclusive has the form 
ny

5h
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( )6O h+ ,  

s i m+ ≤ ≤ ,  
which completes the proof. 
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V. AN A-STABLE (M,2)-METHOD OF ORDER FOUR 

Let . Take 2k = { }1,2kM = , then { }1iJ = , 2 i m≤ ≤ . As 
a result, we obtain the numerical schemes of the form 

1
1

m

n n i i ,  
i

y y p k+
=

= + ∑

n( )1nD k hf y= , (8)  

( )2 21 1n nD k hf y β k α k= + + 21 1

n i i iD k k α k−= + 3 i m≤ ≤

,  

1 1 1 , .  
Case 1. Let . Then the coefficients 2m =

6 12
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3 54

32
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a
−

=   

provide the third order of the A -stable scheme (8). Usually 
the maximal order is abandoned in favour of L -stability. For 

 the coefficients of the second order 2m = L -stable scheme 
have the form 

21
21

2
a β= = − , , , .  1p a= 2 1p a= − 21 0α =

Case 2. Let . Introduce the notations 3m =
2

1 1 4 2c a a= − + 2 21 21c, β aα= +

6c ac β= ( )4 2 212c c β a= −

)−

,  
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3 2 21 , ,  

(2
5 1 21 213c c β β a= .  

Then the coefficients 
3 4 5
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2 1 2 1c a c c c ac α
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c c
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provide third accuracy order of the L -stable scheme (8). 
Here,  and 21α 21β  are constant coefficients and the value of 

 is determined from the equation a
3 26 18 9 1a a a− + − = 0 .  
It is easy to verify that for any value of  it is impossible 

to construct an 
m

L -stable scheme (8) of the fourth order. To do 
this, it is sufficient to write conditions of the fourth accuracy 
order consistency and L -stability. The simplest study of the 
obtained nonlinear system of algebraic equations shows its 
incompatibility. However, provided L -stability is not 
required, the method (8) of fourth accuracy order can be 
constructed.  

Case 3. Let . Introduce the notations 4m =
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where 7 0c ≠  is a constant coefficient. Then the coefficients 
of the fourth order method have the form 

3
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VI. AN L-STABLE (M,2)-METHOD OF ORDER FOUR 

Let 2k = . Take { }1,3kM = , then { }2iJ = , 3 i 4≤ ≤ . As a 
result, we get a scheme of the form 

4
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, (9)  

4 3 42nD k k α k= + .  
Construct an L -stable method of order four. To do this, 
substitute the expansion of the stages , ik 1 i 4≤ ≤ , in the 
Taylor series in the first formulae of (9). Assuming that 

( )ny y t= n  and comparing the obtained presentation of the 
approximate solution 1ny +  with  the Taylor expansion of the 
exact solution ( )1ny t + , write the conditions of the fourth 
accuracy order 
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Applying the method (9) to the solution of the test problem 
y λy′ = , 0(0)y y= , ,  0t ≥
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obtain the condition of L -stability of the numerical formulae 
(9) of the form 

( ) ( )1 31 3 0a a p β a p− + − = .  
Investigating  the consistency of this relation and the order 
conditions, write 

2
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(4 16 )

a a aα
a a
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−
,  

where  is determined from  the necessary condition of  a
L -stability 

4 3 224 96 72 16 1 0a a a a− + − + = .  
The given equation have four real roots 

1 0 10643879214266a = . , ,  2 0 22042841025921a = .

3 0 57281606248213a = . , .  4 3 10031673511599a = .
In calculations it is wise to take , and 
the coefficients of the scheme (9) have the form 

0.57281606248213a =

1 1 27836939012447p = . , ,  2 1 00738680980438p = − .

3 0 92655391093950p = . , , (10)  4 0 33396131834691p = − .

31 1 00900469029922β = . , ,  32 0 25900469029921β = − .

32 0 49552206416578α = − . , .  42 1 28777648233922α = − .

VII. ACCURACY CONTROL 
The third accuracy order method of the form 

1,1 1 1 2 2 3 3 4n ny y b k b k b k b+ = + + + + 5k

4

  
can be applied for accuracy control  of numerical formula (9) 
of the fourth order. Here, 5nD k k= , and , ik 1 i 3≤ ≤ , are 
determined in (9). It is easy to see, that the third order 
requirements have the form 

( ) ( )1 2 32 3 32 42 41 1b b α b α α b+ + + + + + = 1 ,  

( )

( )

1 2 31 32 32 3

31 32 32 42 4

2 3
13 5 4
2

ab ab a β β aα b

a β β aα aα b

+ + + + +

+ + + + + = ,

)

  

( )
(

2 2 2 2
1 2 31 32 32 3

2 2 2
31 32 32 42 4

3 2 3 6

16 4 5 15 10
6

a b a b a aβ aβ a α b

a aβ aβ a α a α b

+ + + + +

+ + + + + = ,
  

( ) ( )2
31 32 3 4

1
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where the coefficients , a 31β , 32β ,  and  are set in 
(10). The given system is linear with respect to , 1 4

32α 42α

ib i≤ ≤ . 
As a result, we have 

1 1.203100567018353b = ,  
1

2 6.552116304144386 10b −= − ⋅ ,  
1

3 7.115271884598151 10b −=

1
4 1.189345958672225 10b −= − ⋅ .  

Now, we can calculate an error estimation  by the formula nε

1 1,1n n nε y y+ += − ,  

and verify the inequality  on a choice of an integration 

step size, where 
nε ε≤

⋅  is some norm in ,  is accuracy of 
calculations. 

NR ε

VIII. THE RESULTS OF CALCULATIONS 
The following example describes a system of two 

differential equations in partial derivatives with initial and 
boundary conditions. The Akzo Nobel Central Research 
laboratory has formulated a research problem of the 
penetration of a labeled tracer antibody in the tumor tissue of 
a living organism [7]. A system of one-dimensional reaction-
diffusion equations 

2

2

u u kuv
t x

∂ ∂
= −

∂ ∂
, v kuv

t
∂

= −
∂

, (11)  

which arise from the chemical reaction 
k

A B C+ → , where A  
is an antibody with a radioactive label, which reacts with 
substrate , the tissue, affected by the tumor, and  is the 
reaction rate constant. Concentrations of 

B k
A  and  are 

denoted by  and , respectively. In deriving equations (11), 
we assumed that the kinetics of the reaction is described by 
the mass action law, and reagent 

B
u v

A  is mobile, whereas 
reagent  is fixed. We study a semi-infinite plate, inside 
which substrate B is uniformly distributed. Reagent 

B
A , when 

applied to the surface of the plate, begins to penetrate into it. 
To simulate the penetration of equation (11), in the strip, the 
following conditions 

( ){ }, :0 ,0TS x t x t T= < < ∞ < < ,  

with the initial conditions 
( ),0 0u x = , ( ) 0,0v x v= ,   0x >

and the boundary conditions 
( ) ( )0,u t φ t= , 0 t T< < ,  

where  is a constant – are considered. For the numerical 
solution, the variable 

0v
x  is converted so that the semi-infinite 

plate is transformed into the final one. This transformation 
provides a special family of transformations of Mobius 

xζ
x c

=
+

, .  0c >

Each transformation of this family transforms  into 
rectangle 

TS

( ){ }, :0 1,0ζ t ζ t T< < < < .  

Using , problem (11) is rewritten as ζ

( ) ( )4 32

2 2 2

1 2 1ζ ζu u u kuv
t ζc ζ c

− −∂ ∂ ∂
= +

∂ ∂∂
− ,  

v kuv
t

∂
= −

∂
,  

⋅ ,  with initial conditions 
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( ),0 0u ζ = , ( ) 0,0v ζ v= ,   0ζ >

and the boundary conditions 

( ) ( )0,u t φ t=
(

, 
)1,

0
u t
ζ

∂
=

∂
, 0 ,  t T< <

The last boundary condition is obtained from the ratio 
. Discretization of the derivatives in the 

spatial variables using the method of straight lines leads to the 
Cauchy problem for a system of ordinary differential 
equations. For discretization, we used a uniform grid 

( ), / 0u t x∂ ∞ ∂ =

{ }iζ , , iζ j ζ= ⋅ Δ
1ζ
N

Δ = , 1 j N≤ ≤ .  

Variables ju  and jv  denote the approximations ( ),ju ζ t  and 

, respectively. It is clear that ( ,jv ζ t ) ju  and jv  are functions 
of . The discretizations of the first and second order 
derivatives on the spatial variable, respectively, have the form 

t

1

2
j j ju u u
ζ ζ

+ −∂ −
=

∂ Δ
1 ,  

( )

2
1

2 2

2j j j ju u u u
ζ ζ

−∂ − +
=

∂ Δ
1+ ,  

1 j N≤ ≤ .  
The values of  and , obtained from the boundary 
conditions, have the form 

0u 1Nu +

( )0u φ t=  and . For 1Nu u+ = N

)( 1 1 2 2, , , , ..., , T
N Ny u v u v u v=   

and , this semidiscretization problem can be written as 20T =

( )
2

, (0) ,

, 0 20,N

dy f t y y g
dt
y R t

= , =

∈ ≤ ≤
 (12)  

where  is set by a user parameter. The function N f  is 
determined by formulas 

( )

2 1 2 3
2 1

2 3 2 1 2 1
2 1 22

2
2

,

j j
j j

j j j
j j j

y y
f α

ζ
y y y

β ky y
ζ

+ −
−

− − +
−

−
=

Δ
− +

+ −
Δ

  

2 2 2 1j j jf ky y −= − ,  
where 

( )3
2

2 1jα j ζ
c

= Δ − , ( )4
2

1 1jβ j ζ
c

= Δ − , 1 j N≤ ≤ ,  

1ζ
N

Δ = , , ,  ( ) ( )1y t t− = ϕ 2 1 2 1Ny y, + , −= N

2Ng R∈ , ( 0 0 00 0 0 T)g v v … v= , , , , , , .  

Function ( ) 2φ t =  for ( ]0,5t ∈  and ( ) 0φ t =  for 

( ]5,20t ∈ , that is, φ  has a first-order discontinuity at the 
point . According to [7], the appropriate values for the 
parameters ,  and  are ,  and 

5t =
k 0v c 100k = 0 1v = 4c = . It 

also shows the results of calculations with high accuracy and 
extended bit grating. 

The calculations were performed with accuracy 410ε −= . 
The following calculations were performed with the numerical 
Jacobi matrix for 200N = , i.e., system (12) consists of 400 
equations. The task of finding the gap of function ( )φ t  at 

5t =   was assigned to the control algorithm of the step. In this 
paper fi  and ji  denote, respectively, the total numbers of 
calculations of the right-hand part and the Jacobi matrix 
decompositions of the problem (12), which allow to estimate 
the efficiency of the integration algorithm objectively. The 
solution of this problem by algorithm was calculated with 
costs 76 717fi =  and 95ji = . 

IX. CONCLUSION 
From the above considerations we can draw the following 

conclusions.  
Firstly, stability of (m,k)-methods depends on a choice of 

sets (3), i.e., on a way of implementation of numerical 
schemes. This follows from a comparison of formulas (8) and 
(9).  

Secondly, a (4,2)-method, which is competitive in 
accuracy with the implicit method of a Runge-Kutta type with 
two calculations of the right-hand part of (1) can be 
constructed. In linear analysis of stability this method is also 
as good as the implicit method of a Runge-Kutta type. In 
addition, in (9) a way of implementation is included, i.e., one 
can estimate computational work per integration step before 
calculations. Computational work of the implicit methods of a 
Runge-Kutta type depends highly on a way of 
implementation. The use of two-stage scheme does not imply 
that at each step the right-hand part of (1) is calculated twice. 
Therefore, for some problems the (4,2)-method is preferred 
over implicit numerical formulas of the Runge-Kutta type. 

Thirdly, when a function f(y) of problem (1) is calculated 
twice, an L-stable (4,2)-method of the fourth accuracy order 
can be constructed whereas corresponding L-stable method 
(2) of the Rosenbrock type can be of order two only. For 
sufficiently high accuracy of calculations and large dimension 
of problem (1), decomposition of the Jacobi matrix is 
responsible, in fact, for total computational work, whereas 
impact of backward Gauss is unessential. In this case (4,2)-
method is more efficient. 

Notice, that in the framework of (m,k)-methods the problem 
of freezing the Jacobi matrix can be solved easily [6].  
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